Computer architecture

In computer engineering, computer architecture is a set of rules and methods that describe the functionality, organization, and implementation of computer systems. Some definitions of architecture define it as describing the capabilities and programming model of a computer but not a particular implementation. In other definitions computer architecture involves instruction set architecture design, logic design, and implementation.

The discipline of computer architecture has three main subcategories:

  1. Instruction Set Architecture, or ISA. The ISA defines the machine code that a processor reads and acts upon as well as the word size, memory address modes, processor registers, and data type.
  2. Microarchitecture, or computer organization describes how a particular processor will implement the ISA. The size of a computer’s CPU cache for instance, is an issue that generally has nothing to do with the ISA.
  3. System Design includes all of the other hardware components within a computing system. These include:
    1. Data processing other than the CPU, such as direct memory access (DMA)
    2. Other issues such as virtualization, multiprocessing, and software features

Computer organization helps optimize performance-based products. For example, software engineers need to know the processing power of processors. They may need to optimize software in order to gain the most performance for the lowest price. This can require quite detailed analysis of the computer’s organization. For example, in a SD card, the designers might need to arrange the card so that the most data can be processed in the fastest possible way.

Computer organization also helps plan the selection of a processor for a particular project. Multimedia projects may need very rapid data access, while virtual machines may need fast interrupts. Sometimes certain tasks need additional components as well. For example, a computer capable of running a virtual machine needs virtual memory hardware so that the memory of different virtual computers can be kept separated. Computer organization and features also affect power consumption and processor cost.

The exact form of a computer system depends on the constraints and goals. Computer architectures usually trade off standards, power versus performance, cost, memory capacity, latency (latency is the amount of time that it takes for information from one node to travel to the source) and throughput. Sometimes other considerations, such as features, size, weight, reliability, and expandability are also factors.

The most common scheme does an in depth power analysis and figures out how to keep power consumption low, while maintaining adequate performance.


Modern computer performance is often described in IPC (instructions per cycle). This measures the efficiency of the architecture at any clock frequency. Many people used to measure a computer’s speed by the clock rate (usually in MHz or GHz). This refers to the cycles per second of the main clock of the CPU. However, this metric is somewhat misleading, as a machine with a higher clock rate may not necessarily have greater performance. As a result, manufacturers have moved away from clock speed as a measure of performance. Other factors influence speed, such as the mix of functional units, bus speeds, available memory, and the type and order of instructions in the programs. There are two main types of speed: latency and throughput. Latency is the time between the start of a process and its completion. Throughput is the amount of work done per unit time. Interrupt latency is the guaranteed maximum response time of the system to an electronic event (like when the disk drive finishes moving some data).

Power efficiency

Power efficiency is another important measurement in modern computers. A higher power efficiency can often be traded for lower speed or higher cost. The typical measurement when referring to power consumption in computer architecture is MIPS/W (millions of instructions per second per watt). Modern circuits have less power required per transistor as the number of transistors per chip grows. This is because each transistor that is put in a new chip requires its own power supply and requires new pathways to be built to power it. However the number of transistors per chip is starting to increase at a slower rate. Therefore, power efficiency is starting to become as important, if not more important than fitting more and more transistors into a single chip. Recent processor designs have shown this emphasis as they put more focus on power efficiency rather than cramming as many transistors into a single chip as possible. In the world of embedded computers, power efficiency has long been an important goal next to throughput and latency.

Shifts in market demand

Increases in publicly released refresh rates have grown slowly over the past few years, with respect to vast leaps in power consumption reduction and miniaturization demand. This has led to a new demand for longer battery life and reductions in size due to the mobile technology being produced at a greater rate. This change in focus from greater refresh rates to power consumption and miniaturization can be shown by the significant reductions in power consumption, as much as 50%, that were reported by Intel in their release of the Haswell (microarchitecture); where they dropped their power consumption benchmark from 30-40 watts down to 10-20 watts. Comparing this to the processing speed increase of 3 GHz to 4 GHz (2002 to 2006) it can be seen that the focus in research and development are shifting away from refresh rates and moving towards consuming less power and taking up less space.